Tag: wifi6

  • Wifi6的科普文章,硕士以下学历就不要看了

    Wifi6的科普文章,硕士以下学历就不要看了

    Wi-Fi设备的接入,核心就在于载波侦听多路访问/碰撞避免(CSMA/CA)。 这个先听后说的机制,从1997年的第一代Wi-Fi(802.11)就开始使用。然而,20多年前的无线网络设备很少,没有人会去考虑,当设备增多时,竞争入网带来的网络拥塞问题。 Wi-Fi的真正普及,是从2008年的Wi-Fi 4(802.11n)开始。可以说,从那时起,Wi-Fi真正成为家庭和企业互联网接入最常见的方式。支持Wi-Fi的设备型号数量,也成指数上升。 如今,Wi-Fi设备在我们的生活中无处不在。随便打开家里的无线路由管理界面,可能就有不下10个Wi-Fi设备同时在线。 设备数量的增加,导致了网络拥塞、性能下降、延时升高等问题。这些问题在Wi-Fi 5(802.11 ac)时代变得愈加严重。所以,在设计Wi-Fi 6(802.11 ax)时,专家们专门针对网络拥塞问题进行了改进和创新。 那么,Wi-Fi 6是通过哪些新技术来提高无线信道容量的呢? 正交频分多址OFDMA 熟悉Wi-Fi的朋友们应该知道,Wi-Fi的空口采用了正交频分复用(OFDM)的调制方式,即整个带宽由相互正交的子载波组成。 在Wi-Fi 6中,802.11工作小组从LTE上引入了OFDMA的接入方式。就多了这么一个“A”字,可以说是给网络容量带来了质变。 如下面左边图所示,基于Wi-Fi 5的OFDM在任意一个时段,频道中的所有带宽只能分配给一个用户,哪怕这个用户的数据需求并不需要占用到全部带宽。 而其他用户接入网络时,需要等待下一个发送机会窗口(TXOP)。这在信道资源的使用上,是非常低效的,尤其是设备显著增多时。 图 1 OFDM与OFDMA对比 OFDMA改变了这一点。OFDMA通过将子载波组成一个个资源单元(RU)的方式,频道可以把瞬时带宽动态划分给不同的用户。 比如上图右边这张图中,第一个TXOP分配给了用户0和用户1,第二个OP全部分给了用户2,接着第三个TXOP中,资源被平均分配给了四位用户。 OFDMA一下子提高了瞬时支持的用户数量。 以下图的20MHz带宽为例,经过子载波分配,20MHz可以最多支持9个设备同时接入,40MHz则可以支持18个设备,以此类推。 图 2 采用OFDMA的20MHz下可用的资源单元数量 (Wi-Fi 6中每个子载波是78.125khz,20MHz就是256个子载波。6 Edge表示距离边缘有6个子载波作为保护带。) 可以说,OFDMA对Wi-Fi信道的容量带来了质变。 BSS coloring 在过去的Wi-Fi技术中,小区间同频干扰(Co-Channel Interference,CCI)是影响信道容量的另一个重要因素。 上篇文章提到,CSMA/CA的核心是采用先听后说(listen before talk,LBT),设备先对无线信道进行监听,在确保没有被占用的情况下,发送数据。 在多AP mesh组网(AP,Access Point,无线接入点)的情况下,小区内的设备会收听到临近同频道的小区的干扰信号,导致设备会误认为本小区此时的无线信道正在被占用,于是停止发送。 这种干扰,在网络没有优化好或者可用的频道数量很少的情况下,会显著降低网络容量。 如下图所示,4个Wi-Fi AP采用了三频道组网。但由于可用的频道只有三个,AP1和AP2不得不都部署在同样的频道Channel 6上,这时AP2的信号对于归属于AP1中的用户设备来说就是干扰——Overlapped Basic Service Set(OBSS,重叠基本服务单元,可以理解为频率相同的重叠小区)。 图 3 三频组网下的同频道干扰场景 当用户设备与AP1进行通信时,由于设备收到同频的AP2的干扰信号,用户设备会误认为AP1的小区此时正在被小区内其他设备占用,于是等待下一个时间段发送。这么一来,网络性能就降低了。 不仅仅是多小区组网,这种干扰问题也会出现在Wi-Fi…