Getting o A
Virtual Machine (KVM)

Ryan Matteson
matty91l@gmail.com
http://prefetch.net

* Tonight | am going to discuss KVM, and show
how to configure a host to use KVM

* | plan to split my presentation into 3 parts:
— Part 1 will provide an overview of the technology

— Part 2 will show you how to use the technology
— Part 3 will be a Q&A period

KVM (Kernel Virtual Machine) is a full virtualization solution that
allows you to run unmodified guests (Linux, Solaris, Windows) on
x86 and X64 systems that support hardware virtualization
extensions

KVM is implemented as two components:
— A kernel module that manages the hardware resources (the

hypervisor)

— A userland process (a modified version of QEMU) that provides
PC platform emulation

When a new KVM guest is booted, it becomes a process (gemu-kvm
on Fedora and CentOS hosts) of the underlying operating system
and is scheduled like any other process*

The gemu-kvm process is a modified version of QEMU, and
communicates with the KVM hyper visor through the /dev/kvm
character device

* There is one exception. The modified QEMU processes run in “guest” mode vs. user or kernel mode

Allows you to run multiple operating system instances on a
single system, which is great for environments that need a
place to test things, or for companies that are consolidating
hosts to better utilize existing hardware resources

Supports live migration, which allows you to move running
guests between systems

Libvirt has been enhanced to manage KVM guests, allowing
you to re-use provisioning and management infrastructure
built on top of it

KVM has been part of the mainline kernel source since
2.6.20 was released, so you don’t need to apply a slew of
kernel patches to get KVM up and operationall!

e KVM utilizes hardware virtualization extensions from
Intel and AMD, which are available in modern CPUs

* You can check /proc/cpuinfo to see if you have the
necessary virtualization extensions:

S egrep 'Mlags.*(vmx|svm)' /proc/cpuinfo

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat
pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt rdtscp Im 3dnowext
3dnow rep_good nopl pni cx16 lahf_Im cmp_legacy svm extapic cr8 legacy 3dnow

* |f you see one of the following flags, your golden:

— vmx indicates the CPU support Intel’s virtualization
extensions

— Svm indicates the CPU supports AMD’s virtualization
extensions

KVM guests can be managed in one of two ways:
— Directly through the modified QEMU executable

— Indirectly through libvirt (this fires up the QEMU binary
under the covers)

The QEMU gemu-system-x86 64 /gemu-kvm binary
can be used to directly manage KVM guests

Libvirt provides the virsh (virtual shell) to manage
KVM guests, and the virt-install utility to
configuration and provision new guests

The examples in this presentation will use libvirt

 KVM / QEMU provide device emulation for several
types of devices:

— IDE disks

— SCSI disks

— USB, Parallel, Serial

— Virtio for accelerated network and disk performance

 KVM / QEMU also several forms of host networking:

— User networking

— Private bridge networking
— Public bridge networking

— Virtual distributed Ethernet

* Guests can be installed from DVDs and ISO images, or
though your favorite network installation method

e To create a new guest, you can pass one or more
parameters to the virt-install command:

S virt-install --connect gemu:///system \
--name puppet --ram 512 \
--file /nfs/vms/puppet.img \
--network=bridge:br0 \
--accelerate -s 36 --pxe -d \
--noautoconsole \
--mac=54:52:00:53:20:00 \
--nographics --nonsparse

guests

Once a guest is created, you can manage it through the virtual shell
(virsh)

To boot a KVM guest, you can use the virsh “start” command:

S virsh start <guest>

To destroy a running guest (i.e., pull the power plug), you can use
the virsh “destroy” command:

S virsh destroy <guest>

To access the hosts console, you can use the virsh “console”
command (this requires the host to be configured to write to the
serial console):

S virsh console <guest>
TONS of additional options, which are documented in virsh(1)

* NICs can be added at guest creation time by appending
several “--network” options to the virt-install command line:

S virt-install --network=bridge:br0 —mac=X '\
--network=bridge:br0 —max=Y ...
For existing guests, the virsh “edit” command can be used to

edit the guest configuration, and a stanza similar to the
following can be added to create a new NIC:

<interface type='bridge'>
<mac address='54:52:00:53:20:00'/>
<source bridge='br0'/>

</interface>

* Disks can be added at guest creation time by appending several “--
file” options to the virt-install command line

S virt-install —file /nfs/vms/puppet/diskl.img —s 18 \
--file /nfs/vms/puppet/disk2.img -s 18

To attach a disk to an existing host, you will first need to create a
disk image with either dd or gemu-create:

S gemu-img create /nfs/vms/puppet/disk3.img 18G

The virsh “edit” command can be used to edit the XML definition,
and a stanza similar to the following can be added to add a new

virtual disk to the guest:

<disk type='file' device="'disk'>
<source file='/nfs/vms/puppet/disk3.img'/>
<target dev='hda' bus='ide'/>

</disk>

 KVM guest consoles can be accessed through
VNC, or via a virtual serial console

* To enable VNC access, you can add the “—
vnc” and “—vncport” options to the virt-install

command line

* To configure serial access, you can add the “-
nographics” option to the virt-install command
line (the guest operating systems need to be
configured to send output to ttySO)

KVM supports live migration, which allows you to move active KVM
guests from one host to another

Migration requires that the the files backing the guest are located
on some type of share storage (e.g., GFS2 file system, OCFS2 file

system, NFS, CIFS share, etc.)
To migrate a guest from the current host to a machine named

“disarm”, you can run the virsh migrate command with the “—live”
option, the name of the guest to migrate, and a connection string:

virsh # migrate —live kvmnodel gemu+tls://disarm/system

The connection string listed above contains the the driver (gemu)
and transport protocol (tls) to use, the machine (disarm) to connect
to, and tells virsh to connect to the system process

* To back up the configuration of a guest, you
can use the virsh “dumpxml!” command:

S virsh dumpxml <guest>

* To restore a guest from an XML file, you can
use the virsh “define” command:

S virsh define <pathtoxmilfile>

* |f you encounter a failure, the first place to
check is the system and guest logs:

/var/log/messages

/var/log/libvirt/<guest>.log

 |f the logs don’t contain sufficient data to
debug an issue, you can increase the log level
by adjusting the log_level and log outputs in
the libvirtd.conf configuration file

« KVM is a relatively new technology, and with any
new technology comes some growing pains

If you encounter an issue, check the Fedora, KVM
and libvirt bug trackers and mailing lists

* To avoid major issues, make sure you are running
a relatively current version of QEMU, KVM and
libvirt (the examples shown in the presentation
came from a Fedora 11 host running the latest
packages from rawhide)

 While KVM is relatively new, it is shaking out
to be one of the leaders in Linux virtualization

If you are interested in playing with KVM, it is
most likely a <insert your favorite package

manager> install away

All examples in this article should work, and
were tested on a Fedora 11 host running a
Linux 2.6.30 kernel with the latest
virtualization updates

KVM website:
http://www.linux-kvm.org/page/Main_Page

Configuring Linux hosts to log to a serial console:
http://prefetch.net/blog/index.php/2009/06/17/

redirecting-the-centos-and-fedora-linux-console-to-a-
serial-port-virsh-console-edition/

Libvirt Website:
http://libvirt.org/

QEMU Website:
http://www.nongnu.org/gemu/

