
DTrace for SysAdmins
An introduction to the

DTraceToolkit
 Ryan Matteson

matty91@gmail.com
    http://prefetch.net



What is the DTraceToolkit?

• Collection of DTrace scripts written by
Brendan Gregg to observe system and
application behavior

• Over 105 scripts are currently available
to observe CPU, memory, I/O, process
scheduling, network activity, userland
applications and much much more …



How is the toolkit organized?

• The toolkit is arranged as a series of
directories, with each directory containing
scripts to observe a specific subsystem (e.g.,
virtual memory)

• The “Bin” directory contains symbolic links to
all of the scripts in the toolkit

• The “Docs” directory contains documentation,
and a description of each script



Where can I grab the toolkit?

• The latest version can be retrieved from
brendangregg.com, or the opensolaris.org
DTrace community website

• The following alias is useful for retrieving and
installing the latest version of the toolkit:

     alias grabtoolkit=“cd /opt && /usr/sfw/bin/wget -q -O - \
http://www.brendangregg.com/DTraceToolkit-latest.tar.gz \         |
/usr/sfw/bin/gtar xz”



Monitoring CPU activity

• The DTraceToolkit comes with several
scripts to monitor interrupts, scheduling
behavior, context switching and CPU
utilization

• All of the scripts related to the CPU are
stored in the  “Cpu” directory



Observing the CPU dispatcher

• The CPU dispatcher maintains one or more
queues of “runnable” processes, and
schedules these onto available CPU
resources

• The dispqlen.d script can be used to measure
the number of “runnable” processes in each
queue:

      $ dispqlen.d
Sampling... Hit Ctrl-C to end.

 CPU 0
           value  ------------- Distribution ------------- count
               5 |                                                            0
               6 |                                                            55
               7 |@@@                                                 559
               8 |@@@@@                                          839



Measuring CPU utilization

• The cputimes scripts can be used to measure
how much  CPU time is being consumed by
each process:

      $ cputimes -a 5
      2006 Sep 10 20:16:22,
      THREADS        TIME (ns)
             fmd             125016
         se.i386            127911
          dtrace             2088111
         fsflush             10904127
     KERNEL             27022234
             orca             4932396085
           IDLE             14861393273



Monitoring virtual memory

• The DTraceToolkit comes with several
scripts to monitor virtual memory usage

• There are also several scripts available
to view and report on swap utilization

• All of the scripts related to virtual
memory and swap are located in the
“Mem” directory



Monitoring paging activity

• The vmstat “-p” option provides system wide
paging activity, but there are times when you
want to see how a specific process is
impacting the virtual memory subsystem

• dvmstat can be used to retrieve paging
activity for all processed with a specific name,
or for a process with a specific process id:
$ dvmstat -n bash
    re   maj    mf   fr  epi  epo  api  apo  fpi  fpo     sy

          584   0  4496   0    0       0    0    0      0     0    577
          72     0  3272   0    0      0    0    0       0     0   1396



Monitoring network activity

• The DTraceToolkit comes with several
scripts to monitor the TCP/IP and
UDP/IP stacks

• There are also scripts to monitor HTTP
requests and NFS activity

• These scripts are located in the “Net”
and “Apps” directories



Monitoring TCP connections

• The connections script can be used to watch
active connections on a system

• To view connection data in a “top”-like
display, the tcptop script can be used

• To display TCP connections, the tcpsnoop
script can be used

• To display UDP connections, the udpsnoop.d
script can be used

• Due to Solaris bug #6315039, these scripts
are currently broken in GA releases of Solaris
(the bug is fixed in opensolaris)



Monitoring NFS client
operations

• Monitoring NFSv3 client behavior prior to
Solaris 10 was a chore (e.g., correlating truss,
snoop and nfsstat was a nightmare!)

• I wrote the nfsclientstats.pl* to assist with
correlating NFSv3 file system operations (also
referred to as VOPs) to processes:
$ nfsclientstats.pl
process    read write readdir getattr setattr lookup access create remove
rename mkdir orca         3328  194           0   5496        6     6882   8246     12
0      0     0     0

       rm           0            0       760     950        0     2850   5320      0    190    0     0
190
touch      0            0           0     378     189    1512   1323    189      0      0     0
0

* Script available at http://prefetch.net



Tracing NFS operations
• Monitoring physical vs. logical NFS I/O was also

a chore prior to Solaris 10 (anyone remember
prex?)

• To determine how often an NFS operation
caused a physical network I/O to occur, and to
measure the latecy of each operation, I
developed the nfstrace script:

      $ nfstrace
Executable Operation     Type      Time     Size   Path
mkdir         nfs3_lookup  physical 359953  N/A    /opt/htdocs/test
mkdir         nfs3_getattr   logical   17481    N/A    /opt/htdocs/test
mkdir         nfs3_getattr   logical   7577      N/A    /opt/htdocs/test
cat              nfs3_read      logical   54848    8192   /opt/htdocs/test/1

* Script available at http://prefetch.net



Monitoring disk Activity

• The DTraceToolkit comes with several
scripts to view physical and logical I/O

• There are also several scripts to profile
application I/O behavior

• Scripts related to I/O are located in the
“Disk” directory



Monitoring physical I/O

• The iotop utility can be used to view physical
I/O in a “top”-like display

• It’s counterpart, iosnoop, can be used to
display block I/O as it happens:

      $ iosnoop
      DEVICE    UID   PID D    BLOCK   SIZE       COMM PATHNAME
       cmdk0       100  3154 R    81824      3072        cat         /etc/default/nfs
      cmdk0        100  3162 R  1050110     1024         ls         /etc/aliases
      cmdk0        100  3242 R  1050634     2048         cat

/etc/default/inetinit
      cmdk0           0     3    W    36726      1024         fsflush /var/cron/log



Monitoring logical I/O

• The rwtop utility can be used to view logical
I/O in a “top”-like display:

• It’s counterpart, rwsnoop, can be used to
display logical I/O as it happens:

      $ rwsnoop
      UID    PID CMD       D   BYTES FILE
        0   4536   more        W      41      /devices/pseudo/pts@0:1
      100   2958 sshd         R      42       /devices/pseudo/clone@0:ptm
        0     540   orca         W    8192    /opt/data/foo1
        0    540    orca         W    8192     /opt/data/foo2
        0    540    orca         W    8192     /opt/data/foo3



Measuring application I/O
patterns

• iopattern can be used to measure sequential
and random I/O system wide (useful for
tailoring file systems to suit specific workloads)

• seeksize.d can be used to determine if an
individual process is performing sequential or
random I/O

• bitesize.d can be used to measure the quantity
and size of each I/O performed by an
application



Measuring I/O wait

• The iopending and iofile.d scripts can be used
to measure how much time an application
spends waiting for I/O:

       $ iofile.d
       Tracing... Hit Ctrl-C to end.
       PID CMD              TIME FILE
       3442 cron              13995 /var/adm/lastlog
       3442 cron               14374 /etc/default/login
       3451 cron               16979 /var/adm/lastlog
       255   cron               17310 /var/cron/log
       386 syslogd            22261 /var/adm/messages
       3456 sadc               24078 /var/adm/sa/sa10
       3456 sadc               26327 /var/adm/sa/



Monitoring processes

• The DTraceToolkit comes with several
scripts to observe processes and profile
applications

• These scripts are located in the “Procs,”
“Apps,” “Users” and “System”
directories



Monitoring calls to exec*()

• The execsnoop script can be used to
watch calls to the exec() family of
functions:

      $ execsnoop
      UID    PID   PPID ARGS
        0      4676   3273 ls -l
        0      4677   3273 ps -ef
        0      4677   3273 ps -ef
        0      4678   3273 cat /etc/system



Monitoring calls to open*()

• The opensnoop script can be used to
capture calls to the open() family of
functions:

    $ opensnoop
    UID    PID COMM          FD PATH
        0      540     topen          69 /opt/data/foo1
        0      540     topen          69 /opt/data/foo2
        0      540     topen          69 /opt/data/foo3
        0      540     topen          69 /opt/data/foo4



Miscellaneous process scripts

• newproc.d can be used to watch
processes as they are created

• errinfo can be used to watch errno
values as they are generated

• procsystime can be used to determine
how much CPU time is spent in each
system call

• dapptrace and dappprof can be used to
profile applications



Conclusion

• DTrace is an invaluable addition to Solaris
• There are over a hundred extremely useful

scripts that can be used to derive useful
debugging and profiling data

• The DTraceToolkit allows system
adminisatrators to solve real problems without
needing to crack open the Dtrace users
guide, Solaris Systems Programming or
Solaris Kernel Internals



References
• Dtrace users guide

– http://www.opensolaris.org/os/community/dtrace/
• DTraceToolkit website

– http://brendangregg.com
• Top Ten Dtrace scripts

– http://prefetch.net
• Observing I/O behavior with the DTraceToolkit

– http://prefetch.net
• Understanding vmstat and mpstat output with Dtrace

– http://prefetch.net



Questions?


